1066

pp. 633-636, 1973.

[8] P.H. Masterman and P. J. B. Clarricoats, “Computer field-matching
solution of waveguide transverse discontinuities,” Proc. Inst. Elec.
Eng., vol. 118, pp. 51-63, 1971.

[9] R. Mittra, “Relative convergence of the solution of a doubly infinite

set of equations,” J. Res. Nat. Bur. Stand., Sect. D, vol. 67D, pp.

245-254, 1963.

S. W. Lee, W. R. Jones, and J. J. Campbell, “Convergence of
numerical solutions of iris-type discontinuity problems,” IEEE
Trans. Microwave Theory Tech., vol. MTT-19, pp. 528-536, 1971.
B. MacA. Thomas, “Theoretical performance of prime-focus para-
boloids using cylindrical hybrid-mode feeds,” Proc. Inst. Elec. Eng.,
vol. 118, pp. 1539-1549, 1971.

[12] I S. Gradshteyn and 1. W. Ryzhik, Tables of Integrals, Series and

Products, New York: Academic, 1965, p. 634.

[10]

[11]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 10, OCTOBER 1981

- Graeme L. James was born in Dunedin, New
Zealand, on September 11, 1945. He received the
B.E. and Ph.D. degrees in electrical engineering
from the University of Canterbury, Christchurch,
New Zealand, in 1970 and 1973, respectively.

Between 1973 and 1976 he was a post-doctoral
Fellow with the Department of Electrical and
Electronic Engineering, Queen Mary College,
London, England, where he was involved in a
number of projects concerned with electromag-
netic scattering and diffraction and wrote his

book Geometrical Theory of Diffraction for Electromagnetic Waves. Since

June 1976 he has been with the Division of Radiophysics, CSIRO,

Sydney, Australia where he has been mainly concerned with research into

high performance microwave antennas.

Surface Waves and their Relation to the |
Eigenfrequencies of a Circular-Cylindrical
Cavity

I V. SUBRAHMANYAM GREGORY A. H. COWART, MUSTAFA KESKIN, HERBERT UBERALL,
GUILLERMO C. GAUNAURD, aND EUGENIA TANGLIS

Abstract—The eigenfrequencies of a finite-length cylindrical cavity may
be interpreted as the resonances caused by the phase-matching of cir-
cumferential waves that circamnavigate the cavity along certain helical
paths, and that get reflected back and forth from its top and bottom flat
surfaces. In this paper, we obtain the dispersion curves of these
cicumferential waves that correspond to a series of well-defined pitch
angles of their helix for different values of the cylindrical cavity’s length-
to-radius ratio.

I. INTRODUCTION

HE ANALYSIS of electromagnetic cavity resonators
has been the subject of much previous work [1]. We
shall consider here the case of a finite cylindrical cavity in
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a conducting medium, for which the Dirichlet boundary
condition at its surface leads to transverse magnetic (TM)
wave propagation, and the Neumann boundary condition
leads to transverse electric (TE) wave propagation [2].

The exact expressions [2] for the finite cylindrical cavity’s
eigenfrequencies corresponding to the two mentioned cases
are obtained in the conventional way from satisfying the
appropriate boundary conditions. Consider the cavity to be
filled with a uniform nondissipative medium having dielec-
tric constant € and permeability p. With a harmonic time
dependence e '“’ ‘for the fields inside the cavity, the
Maxwell equations yield

(V2+k*)E=0 (Vv?*+k?)B=0
k=pew’/cl

(1a)
(1b)
where ¢, is the speed of light in vacuo. The results come out
in terms of standing waves with half-integer multiples of
the axial wavelength along the cylinder’s length and with
integer multiples of azimuthal wavelength around the cyl-
inder’s circumference, while the radial boundary condition
introduces the roots of the Bessel functions. If the corre-
sponding solutions for the surface field of the cavity are
transformed using the Watson—Sommerfeld method, they

0018-9430 /81 /1000-1066300.75 ©1981 IFEE
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can be shown [3], in the high-frequency region, to describe
surface waves which propagate around the cylinder along
helical Fermat paths. It will be seen in the following that
using this surface wave picture, one may obtain dispersion
curves for the phase velocities of these surface waves
directly from the conventional expressions for the cylinder
eigenfrequencies, thereby foregoing the application of the
cumbersome Watson— Sommerfeld method. Dispersion
curves are found for different length-to-radius ratios and
for various pitch angles of the helical paths, which are
shown to take on a series of well-defined discrete values.

The motivation for the present study was given by the
desire to provide a physical picture, i.e., in terms of surface
waves which close into themselves after each circumnaviga-
tion, for explaining the cavity resonances and eigenfre-
quencies conventionally obtained from the normal-mode
approach, which is devoid of any comparable physical
interpretation. In scattering theory, it is well known [4] that
both the modal and the surface wave approach comple-
ment each other, the former being more useful at low
frequencies where few modes are present, the latter at high
frequencies where many modes, but only a few surface
waves are important (although each of these two pictures is
separately valid, and mathematically equivalent to the other
one, over the entire frequency range). In waveguide theory,
the surface wave picture seems to have received little
attention so far, so that our interpretation of the cavity
eigenfrequencies may represent a fairly novel approach in
this domain.

II. THEORY

Introducing the interior cavity fields y=FE, for TM
modes, or Y= B, for TE modes (i.e., the field components
parallel to the cavity axis z), (1) may be transformed [2]
into a transverse wave equation

(V2+y2)y=0 (2a)
where
2 2 82
V=V "g (2b)

(2¢)

2 o’
Y  =pe—5 —k2=k?—k?
Co
with k, being the longitudinal wavenumber since the fields
have a z-dependence exp(=*ikz), and y being a transverse
wavenumber.
The transverse wave equation (2a), may for the case of a
circular-cylindrical cavity, be written as

2
The solution of this equation leads to separated solutions
of (1a) of the form

Y(p,9)Z(z)=R(p)2(9)Z(z) (3a)
where (p, @, z) are the cylindrical coordinates, and the

(2d)
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Fig. 1. Finite length cylindrical cavity showing the various components
of the propagation vector. (k, is the propagation vector of the helical
Fermat path of the surface wave.)

separated functions are

R(p)=J,(p) (3b)

O(¢)=e=ee? (3c)

Z(z)=e™", (3d)

The single-valuedness condition under ¢— ¢ +27 leads to
s =m/a, m=1,2,3,--- (4a)

which is a condition stipulating that an integer number m
of azimuthal wavelengths A, =27 /k, exactly fit the cylin-
der’s circumference 2wa. If the cylinder of length b and
radius a is placed with its axis along the coordinate z-axis
so that its bottom and top surfaces are at z=0 and z=b,
respectively (Fig. 1), then the boundary conditions, e.g., the
Dirichlet condition ¢|,=0, ie., Z(0)=Z(b)=0, select a
Z-solution of the form asin k, z, leading to

k,=jm/b, j=1,2,3,--- (4b)

which is a condition stipulating that a half-integer number
J/2 of axial wavelengths A, =2#/k, exactly fit the cylin-
der’s length b. For the Neumann boundary condition
0y /on|, =0, i.e., Z(0)=Z(b)=0, the Z-solution has a form
acos k,z, which also leads to the same condition of (4b).

If (3b) and (3c) are inserted into (2d) and the Bessel
equation is used, one then finds that the wave equation is
satisfied with m given by (4a) and y given by (2c).

The wave vector k may now be decomposed into compo-
nents, as shown in Fig. 1, and a variety of relations can be
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formed:
k*=k}+kl+k? (5a)
k:=kZ+k? (5b)
k*=k>2+k} (5¢)
:k§+ki:k2—kf (5d)

the latter condition containing (2¢). This analysis shows the
interesting fact that the wavenumber y contained in the
radial Bessel function solution is not actually a purely
radial wavenumber, but has a tangential component &, in
1t.

The Dirichlet boundary condition (TM mode) |, =0, at
p=a, leads to the solution

‘Y:xnln/a’ (6a)

and the Neumann boundary condition 94 /dn| =0 at p=a
to

n=1,2.3,---

Y=x,,/4a, n=1,2,3,--- (6b)

where x,,, and x,,, are the nth zeroes of J, (x) and J,(x),
respectively. The eigenvalues of the wave vector k, which
are simply related to the eigenfrequencies f of the cavity by
k=2mf/c where c=c¢, /fep is the velocity of light in the
cavity filler, are now obtained from k2 =(y? +k2)"/%, The
result for the TM mode (Dirichlet boundary condition) is

(ka)? 2, +(jm)(a/b)]" (7a)

nmj [ mn
and for the TE mode (Neumann boundary condition), it is

(ka)pw, = [x2,+ (i) (a/b)]"

Using the abovementioned results of the Watson-—
Sommerfeld transformation, we now view the surface fields
of the cavity as a superposition of helically propagating
waves with propagation vector k,, and introduce their
phase velocities by ¢, =w/k,. Then the dispersion curves
of the surface waves are obtained from

¢, /c=(ka)/(ka). (8)
The right-hand side of (8) is only known at the discrete
eigenfrequencies of the cavity but in practice, this informa-
tion suffices to determine the continuous dispersion curves
of the surface waves. At the resonances, the quantity ka is
given by (7a) or (7b), and the eigenvalues of k a are found
from (5b) as

(kyat) , =[m* +(jm ) (asb)]". ()
The points on the dispersion curves which correspond to
the cylinder resonances are, therefore, obtained as

(7b)

(e, /eyt ={[x2+ () (asb)]/[m? + (jn )(ayp )]}

for the TM modes, and
(C /C)nmj

:{[Xffn"‘(]'ﬂ)(a/b)z]/[mz +(j77)2(a/b)2]}1/2
(10b)
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for the Neumann condition. Equations (10) determine, at a
series of discrete points, the phase velocities ¢, of the
surface waves which propagate along a helical path with
pitch angle a (Fig. 1). A collection of paths with discrete
pitch angle values a,,, is selected by the boundary condi-
tions, where

=(m/jm)(b/a) (11)

showing that a surface wave propagating at a given pitch
angle corresponds to a constant value of the ratio m /j of
eigenfrequency indexes. To each such ratio, there corre-
sponds an infinite series of surface waves which are labeled
by the same index » that also labels the order of the zeros
of the Bessel function. The discrete pitch angles are de-
termined by the conditions of integer azimuthal wavelength
and half-integer axial wavelength, the latter condition cor-
responding in the surface wave picture, to a back-and-forth
reflection of the surface waves from the end caps of the
cylinder. We note further that the correction terms due to
the pitch of the helix, given by the second terms inside the
square brackets of (7), (9), and (10) are not present in the
case of normal incidence (j=0). For infinite cylinders
(b— o0) they are still present for the case of helical paths if
with the condition b— co, we have simultaneously j— co.
Rewriting (11) as

tana,,, =k, /k,

mcota,, =jm(a/b) (12a)

then (7), (9) can be arranged as follows:
(k,a),, :m<1+cot2 )l/zEmcscamJ (12b)
(ka ) =[x2, +m?cot’a,, | (12¢)
(ka)re, =[x2,+m>cot’a, |, (12d)

Hence,

(c, /c)nmj:[(xmn/m)zsinzam +coszozmj]l/2 (13a)
(¢0/ ey =] (xpun/m)?sinl a,,, +cos?a,, | /. (13b)

For the case of Neumann boundary conditions, the usual
interpretation of the surface waves in terms of “Whispering
Gallery” waves [4] which reflect successively from the inner
cylinder surface can be carried through in a straightfor-
ward manner.

I11.

We have carried out numerical calculations of the dis-
persion curves for the helical surface waves on cylindrical
cavities with various values of the radius-to-length ratio

DisPERSION CURVES OF THE SURFACE WAVES

(10a)

a/b, obtaining the discrete points from (10). These points
were spaced sufficiently closely so that smooth curves
could be drawn through them. Fig. 2 shows the dispersion
curves (i.e., the ¢, /c values) plotted versus wave size ka for
a cylindrical cavity satisfying the Dirichlet boundary con-
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Fig. 2. (a) Dispersion curves of helicoidally propagating surface waves
on a long finite cylindrical cavity (b/a=8), corresponding to four
different pitch angles determined by the ratios m/j=1/2, (dash—dotted
curve), 1 (solid curve), 2 (dashed curve) and oo (a=90°, dotted curve)
as indicated, for TM modes satisfying the Dirichlet boundary condition
on the surface. (b) Same as Fig. 2(a) for a shorter (b/a=4) cavity. (c)
Same as Fig. 2(a) for an even shorter (b/a=2) cavity.

dition (i.e., TM modes). Fig. 3 shows analogous curves for
the cylindrical cavity . satisfying the Neumann condition
(i-e., TE modes). Each figure consists of three parts corre-
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Fig. 3. (a) Same as Fig. 2(a), but for TE modes satisfying a Neumann
boundary condition on the cavity surface. (b) Same as Fig. 2(b), but
with a Neumann boundary condition. (c) Same as Fig. 2(c), but with a
Neumann boundary condition.

o

sponding to a/b ratio of (a) 1/8,(b) 1/4, and (c) 1/2, and
the corresponding cylinder shapes are sketched in the
figures. The discrete points along the curves correspond to
the discrete cavity eigenfrequencies and are labeled by the
set of three integers n, m, j. The integer n labels the entire
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curve which, therefore, refers to the nth member of the
surface wave family that propagates around the cylindrical
cavity along a helical Fermat path with a given pitch angle
a,,
Ijt follows from (11) that this angle is determined by the
ratio of the integer labels m and j, which stays constant
along each dispersion curve. Each of these figures exhibits
four curves corresponding to m/j ratios of 1/2 (dash-
dotted), 1 (solid), 2 (dashed), and oo (a=90°, dotted) with
the corresponding pitch angles «,,, quoted on the graphs.
These a-angles vary depending on the values of the a/b
ratio (except for a=90° where c,/c is independent of
a/b), and inspection of Fig. 1 shows that the more elon-
gated the cavity becomes, the tighter the helix is wound for
a given value of the m/j ratio. In other words, the shorter
the cavity the more often a surface wave of fixed m/j value
will be reflected back and forth between the two flat end
surfaces. Dispersion curves have been produced only for
the indicated values of «, but the dependence on the value
of a is seen to be weak; there is a much stronger depen-
dence on the a/b value. The leftmost points on the curves
are (n, m, j) with one of m or j equal to unity. The smooth
curves drawn through these points, which rise to an infinite
cutoff at appropriate cutoff frequencies, may however be
obtained by an extrapolation of (10) with m treated as a
continuous variable. The cutoff frequencies are obtained
for m—0, since (13) show that then, (¢, /¢)— o (note that
J/m and hence a,,; is constant along each dispersion
curve); thus

™
(ka)nmJZXOn

TE
(ka)nmj:x(/)n

(14)

determine the cutoff frequency. This limit is the same for
all values of j/m, i.e., for any pitch angle.

Fig. 1 may provide the impression that our formalism is
based on a ray picture of the diffraction process, which
would be valid only for large values of ka. The dispersion
curves which our formalism provides are, however, ob-
tained from the wave equation and thus, are valid for all
frequency ranges down to the cutoff frequencies.

The high-frequency limit of our dispersion curves is
obtained by noting that along each curve, m— o0, j— oo,
(with m/j=constant) in that limit. Using (13) and noting
that [5]

lim x,,—>m lim x,,,—»>m (15a)
n— 00 m— 0
it becomes apparent that
lim (c,/c),,,=1. (15b)
ka— o0

Figs. 2 and 3 bear out this conclusion.

We should also comment on the case of the pitch angle
a,,,=90° so that the corresponding surface wave de-
scribes a circular, rather than helical, path over the cylinder
surface. This case corresponds to j=0, i.e., k, =0, and thus
m/j= 0. Equations (10) show that then

cS TM — xmn
()= (162)
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and

Cs TE _,x;nn
(—g)nm()— m (16b)

while the corresponding ka-values are

(ka)™ =x,. (17a)
(ka)r =Xl (17b)

These results are seen to be independent of the cavity’s a /b
ratio, and they are plotted as the dotted curves in Figs. 2
and 3.

The case of an infinitely long cylindrical cavity, b— oo,
should also be considered. Since &, of (4b) has to remain
finite for this case, we must then also require that j— oo, so
that &, becomes a continuous variable. Accordingly, from
(11), the pitch angle «,,.. is then no longer quantized and
becomes a continuous quantity also, given by

(18)
but it corresponds to different sets of continua correspond-
ing to the values of m. To obtain dispersion curves, (12)
and (13) can be used with a,,, replaced by the continuous
angle a,, . Figs. 2 and 3 still represent examples even for
the case of the infinite cylinder, but with particular choices
of the pitch angle.

Finally, we note that some typical features of solutions
of Neumann and Dirichlet problems become quite ap-
parent from the graphs. All curves of a given case for the
Neumann boundary condition always lie beneath the cor-
responding ones for the Dirichlet boundary condition,
thus, in the Neumann case all surface waves have corre-
spondingly slower phase velocities than in the Dirichlet
case. Moreover, for all cases shown in Figs. 2 and 3, the
dispersion curves for the Neumann case (Fig. 3) are inter-
laced, for all cavity lengths (i.e., solid, dashed, and dotted
curves), with the respective ones of the Dirichlet case
(shown in Fig. 2). This means, for example, that the solid
(dashed or dotted) curves having first index n=2 in Fig.
2(a), 2(b), or 2(c) lie between the solid (dashed or dotted)
curves having first indexes n=2 and n=3 in Fig. 3(a), 3(b),
or 3(c). respectively. Eigenvalue interlacing theorems to
this effect could be shown to hold.

tana,, =m/(k.a)

IV. SuMMARY AND DISCUSSION

We have employed the picture of helically propagating
surface waves on a cylindrical cavity of finite length,
obtained via the Watson—Sommerfeld method [3], in order
to generate, in a very simple fashion, the dispersion curves
of the surface waves. These creeping waves propagate
along helicoidal Fermat paths with fixed pitch angle a.
Their phase velocities were computed at a series of discrete
points which were close enough to permit the drawing of
continuous interpolating dispersion curves through them.
These points correspond to the locations of the cavity
eigenfrequencies and we have restricted our analysis to the
case of a cavity with perfectly conducting walls. In this
case, explicit expressions for the eigenfrequencies are known
and can be determined by a Dirichlet (TM modes) or by a
Neumann (TE modes) boundary conditions on its surface.
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The surface wave picture brings a new order into the
variety of eigenfrequencies of a cavity. Instead of m, the
mode number and order of the Bessel function solution of
the guide, it is now the integer n which is the predominant
‘index since it labels the individual surface waves. The other
two labels m and j are seen to have geometrical significance
only since they tell us, essentially-through (5b) in conjunc-
tion with (4a) and (4b) (which may also be rewritten in
terms of the wavelengths along the ¢- and z-direction, i.e.,

(/A =(1/A, ) +(1N,) (19)

where A is the wavelength of the surface wave), exactly in
which geometrical fashion the nth surface wave is located
on the cavity surface. Equation (19) is an expression of the
fact that, with mA, =27a and jA, =2b, the surface waves
are actually closed into themselves (and thus cause the
modal fields in a resonant fashion) after completing their
helical path, including the back-and-forth reflections from
the ends of the cylinder.

In this connection, it is worth noting that the “surface
waves” of our terminology extend in fact into the interior
of the cavity (although they are more easily visualized on
the surface). But as mentioned before, this picture is most
useful at high frequencies where large mode orders m are
encountered; and in this regime, the Bessel function field
solutions of (3b) are most heavily weighted towards the
surface of the cavity [4]. We also note that the surface wave
picture with its accompanying reclassification and physical
interpretation of the cavity resonances does arise mathe-
matically from a full-fledged use of the Watson transfor-
mation [3], but that our present approach, based only on

the actual resonance frequencies, has achieved the same -

results in a vastly simpler fashion.

Some further discussion of the relation between normal
modes and our surface waves (here loosely pictured as rays,
for illustrative purposes) might be in order. There is no
strict one-to-one correspondence of one mode to one ray
per se. There is, however, a connection between a ray and
some “representative” modes. This connection may be
gleaned from a paper by Tindle and Guthrie and their
discussion of sound propagation in an inhomogeneous
oceanic wave guide [6]. A ray picture emerges at high
frequencies where many modes m, j are available to form a
superposition. The weight factors of this superposition are
known if the manner of exciting the fields in the guide is

prescribed (in [6], this was provided by a point source). If a .

partial sum centered around the mode with labels m,, j, is
selected out of the modal sum, Tindle and Guthrie showed
using WKB theory and also by numerical calculation that
the field defined by such a partial sumi approximately
represented a ray corresponding (for the present case) to a
geometry given by (11), i.e., to

tana,,;, =(m, /jom)(b/a). (20a)

At high frequencies, many modes are available to form the
partial sum and the field resembles a fairly sharp, well-
defined ray. At low frequencies, the few modes available
can only form a fuzzy kind of ray. This was also demon-
strated in the acoustic model experiments of A. B. Wood
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where these fuzzy rays were optically visualized [7].

At a given point on the surface of the cavity (or, to that
effect, anywhere in its interior), the field of a representative
mode (m,, j,), in the aforementioned sense, actually corre-
sponds to four different helical waves: a counter-rotating
pair with pitch angles *a,, . for a cylindrical waveguide,
and for the cavity, two such pairs propagating in the +z-
and —z-directions, respectively, Note, however, that this
picture of “rotating” waves has nothing to do with any
“circular polarization” of the helical wave fields; the ray
picture rather refers to the (helical) direction of energy flow
contained in the modal group centered around (m,, j;)
which corresponds to the given helical field, while the
polarization of this group of modes follows from standard
wave guide theory [1].

It is believed that our present discussion of helical waves
introduces a novel point of view into the subject of wave
guides and resonant cavities, which due to the physical
picture it furnishes, and due to the simple connection
between cavity eigenfrequencies and helical-wave reso-
nances upon which we have elaborated here, has presented
us with some worthwhile new insights.
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