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Surface Waves and their Relation to the
Eigenfrequencies of a Circular–Cylindrical

Cavity

J. v. SUBRAHMANYAM, GRE&ORY A. H. COWART, MUSTAFA KESKIN, HERBERT UBERALL,

GUILLERMO C. GAUNAURD, AND EUGENIA TANGLIS

Alsstract-The eigenfrequenciesof a finhe-lerrgtfr cylindrical cavity may
be interpreted as the resonances caused by the phase-matcfdng of cir-

cumferential waves that circumnavigate the cavity along certain helicaf

paths, and that get reflected back and forth from its top and bottom flat

surfaces. In this paper, we obtain the dkpersion curves of these

circumferential waves that correspond to a series oj well-defined pitch

angles of their helix for different values of the cylindrical cavity’s lerrgth-

to-radius ratio.

1. INTRODUCTION

T HE ANALYSIS of electromagnetic cavity resonators

has been the subject of much previous work [1]. We

shall consider here the case of a finite cylindrical cavity in
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a conducting medium, for which the Dirichlet boundary

condition at its surface leads to transverse magnetic (TM)

wave propagation, and the Neumann boundary condition

leads to transverse electric (TE) wave propagation [2].

The exact expressions [2] for the finite cylindrical cavity’s

eigenfrequencies corresponding to the two mentioned cases

are obtained in the conventional way from satisfying the

appropriate boundary conditions. Consider the cavity to be

filled with a uniform nondissipative medium having dielec-

tric constant c and permeability p. With a harmonic time

dependence e ‘i@’ for the fields inside the cavity, the

Maxwell equations yield

(v’+k’)E=o (v’+k’)B=o (la)

k=pcw2/c: (lb)

where COis the speed of light in oacrm. The results come out

in terms of standing waves with half-integer multiples of

the axial wavelength along the cylinder’s length and with

integer multiples of azimuthal wavelength around the cyl-

inder’s circumference, while the radial boundary condition

introduces the roots of the Bessel functions. If the corre-

sponding solutions for the surface field of the cavity are

transformed using the Watson– Sommerfeld method, they

0018-9480/81 /1000- 1066$00.75 01981 IEEE
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can be shown [3], in the high-frequency region, to describe

surface waves which propagate around the cylinder along

helical Fermat paths. It will be seen in the following that

using this surface wave picture, one may obtain dispersion

curves for the phase velocities of these surface waves

directly from the conventional expressions for the cylinder

eigenfrequencies, thereby foregoing the application of the

cumbersome Watson– Sommerfeld method. Dispersion

curves are found for different length-to-radius ratios and

for various pitch angles of the helical paths, which are

shown to take on a series of well-defined discrete values.
The motivation for the present study was given by the

desire to provide a physical picture, i.e., in terms of surface

waves which close into themselves after each circumnaviga-

tion, for explaining the cavity resonances and eigenfre-

quencies conventionally obtained from the normal-mode

approach, which is devoid of any comparable physical

interpretation. In scattering theory, it is well known [4] that

both the modal and the surface wave approach comple-

ment each other, the former being more useful at low

frequencies where few modes are present, the latter at high

frequencies where many modes, but only a few surface

waves are important (although each of these two pictures is

separately valid, and mathematically equivalent to the other

one, over the entire frequency range). In waveguide theory,

the surface wave picture seems to have received little

attention so far, so that our interpretation of the cavity

eigenfrequencies may represent a fairly novel approach in

this domain.

II. THEORY

Introducing the interior cavity fields ~= E= for TM

modes, or $= B, for TE modes (i.e., the field components

parallel to the cavity axis z), (1) may be transformed [2]

into a transverse wave equation

(V; +y’)+=o (2a)

where

~2=v2 a’
t

az’

0)2
~2=w--@=k2-k:

(2b)

(2C)

with k, being the longitudinal wavenumber since the fields

have a z-dependence exp ( * ikz), and y being a transverse

wavenumber.

The transverse wave equation (2a), may for the case of a

circular-cylindrical cavity, be written as

The solution of this equation leads to separated solutions

of (1a) of the form

+( P>9)~(z)=~(P)@( 9)z(z) (3a)

where (p, q, z) are the cylindrical coordinates, and the
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Fig. 1. Finite length cylindncaf cavity showing the various components
of the propagation vector. (k, is the propagation vector of the helicaf
Ferrnat path of the surface wave.)

separated functions are

R(p)= Jm(yp) (3b)

@(rp)=e*ik@9 (3C)

Z(z)= e* ’~’z. (3d)

The single-valuedness condition under q + T + 27r leads to

kq = m/a, m=l,2,3, . . . (4a)

which is a condition stipulating that an integer number m

of azimuthal wavelengths A ~ = 2 rr/kP exactly fit the cylin-

der’s circumference 2~a. If the cylinder of length b and

radius a is placed with its axis along the coordinate z-axis

so that its bottom and top surfaces are at z= O and z= b,

respectively (Fig. 1), then the boundary conditions, e.g., the

Dirichlet condition $1,= O, i.e., Z(0)= Z(b)= O, select a

Z-solution of the form a sin kZz, leading to

k, =j~/b, j=l,2,3, . . . (4b)

which is a condition stipulating that a half-integer number

j/2 of axial wavelengths A,= 2~/k, exactly fit the cylin-

der’s length b. For the Neumann boundary condition

dt/On 1. = O, i.e., Z(0) = Z(b)= O, the Z-solution has a form
a cos k,z, which also leads to the same condition of (4b).

If (3b) and (3c) are inserted into (2d) and the Bessel

equation is used, one then finds that the wave equation is

satisfied with m given by (4a) and y given by (2c).

The wave vector k may now be decomposed into compo-

nents, as shown in Fig. 1, and a variety of relations can be
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formed:

k2=k; +k; +k2 ~ (5a)

k:=k:+k2 z (5b)

k2=k; +k2 s (5C)

y2=k:+k:=k2–kz z (5d)

the latter condition containing (2c). This analysis shows the

interesting fact that the wavenumber y contained in the

radial Bessel function solution is not actually a purely

radial wavenumber, but has a tangential component kq in

it.

The Dirichlet boundary condition (TM mode) ~ 1, = O, at

p= a, leads to the solution

y=~,,,n/a, ~= 1,2,3,... (6a)

and the Neumann boundary condition i3~/i3n 1.,= O at p = a

to

y=x~,,n/a2 ~= 1,2,3,... (6b)

where x~~ and x~~ are the n th zeroes of J~(.x) and J;,(x),

respectively. The eigenvalues of the wave vector k, which

are simply related to the eigenfrequencies ~ of the cavity by

k= 27f/c where c= CO/@ is the velocity of light in the

cavity filler, are now obtained from k2 = (y2 + k: )’/z. The

result for the TM mode (Dirichlet boundary condition) is

(ka)~~,= [xL +(j~)2(a/b)2]11’ (7a)

and for the TE mode (Neumann boundary condition), it is

(ka ):Z,= [.x~~~+ (jn-)2(a/b)2] “z. (7b)

Using the abovementioned results of the Watson –

Sommerfeld transformation, we now view the surface fields

of the cavity as a superposition of helically propagating

waves with propagation vector k,, and introduce their

phase velocities by c, = o/k,. Then the dispersion curves

of the surface waves are obtained from

c,/c=(ka)/(k,a). (8)

The right-hand side of (8) is only known at the discrete

eigenfrequencies of the cavity but in practice, this informa-

tion suffices to determine the continuous dispersion curves

of the surface waves. At the resonances, the quantity ka is

given by (7a) or (7b), and the eigenvalues of k,a are found
from (5b) as

(k,a)n,=[m2+(jn)2 (a/b)2]’”2. (9)

The points on the dispersion curves which correspond to

the cylinder resonances are, therefore, obtained as

for the Neumann condition. Equations (10) determine, at a

series of discrete points, the phase velocities c, of the

surface waves which propagate along a helical path with

pitch angle a (Fig. 1). A collection of paths with discrete

pitch angle values am, is selected by the boundary condi-

tions, where

tan am, =k9/kZ=(m/jm-)( b/a) (11)

showing that a surface wave propagating at a given pitch

angle corresponds to a constant value of the ratio m/j of

eigenfrequency indexes. To each such ratio, there corre-

sponds an infinite series of surface waves which are labeled

by the same index n that also labels the order of the zeros

of the Bessel function. The discrete pitch angles are de-

termined by the conditions of integer azimuthal wavelength

and half-integer axial wavelength, the latter condition cor-

responding in the surface wave picture, to a back-and-forth

reflection of the surface waves from the end caps of the

cylinder. We note further that the correction terms due to

the pitch of the helix, given by the second terms inside the

square brackets of (7), (9), and (10) are not present in the

case of normal incidence (j= O). For infinite cylinders

(b- co) they are still present for the case of helical paths if

with the condition b + co, we have simultaneously j“ + co.

Rewriting (11) as

m cot amj =jn(a/b ) (12a)

then (7), (9) can be arranged as follows:

(k,a)~,=m(l +cot2a~, )’’2~mcsca~, (12b)

(ka)~~j= [x~~ +m2cot2 am,]’” (12C)

(ka)~l= [x~~ +m2cot2 a~,] ‘“. (12d)

Hence,

(c,/C);;,= [(xmn/m)2sin2am, +cos2am,]’2 (13a)

(c,/C):J= [(xLn/m)2sin2a~J +cos2a~,] ’2. (13b)

For the case of Neumann boundary conditions, the usual

interpretation of the surface waves in terms of “Whispering

Gallery” waves [4] which reflect successively from the inner

cylinder surface can be carried through in a straightfor-

ward manner.

III. DISPERSION CURVES OF THE SURFACE WAVES

We have carried out numerical calculations of the dis-

persion curves for the helical surface waves on cylindrical

cavities with various values of the radius-to-length ratio

(c,/c)~~, = {[x;. +(j~)2(a/b)2]/[m2+( jn)2(a\b)2] }’2 (lOa)

for the TM modes, and
a/b, obtaining the discrete points from (10). These points

(c,/c)~, were spaced sufficiently closely so that smooth curves

= {[~~~+(j~)(a/b)2] /[m2+(jT)2(a/b)2] }’2
could be drawn through them. Fig. 2 shows the dispersion

curves (i.e., the c, /c values) plotted versus wave size ka for

( 10b) a cylindrical cavity satisfying the Dirichlet boundary con-
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Fig. 2. (a) Dispersion curves of helicoidally propagating surface waves

on a long finite cylindrical cavity (b/a= 8), corresponding to four
different pitch angles determined by the ratios m/j= 1/2, (dash-dotted
curve), 1 (solid curve), 2 (dashed curve) and m (a= 90°, dotted curve)
as indicated, for TM modes satisfying the Dirichlet boundary condition
on the surface. (b) Same as Fig. 2(a) for a shorter (b/a= 4) cavity. (c)

Same as Fig. 2(a) for an even shorter (b/a= 2) cavity.

Fig. 3. (a) Same as Fig. 2(a), but for TE modes satisfying a Neumann
boundary condition on the cavity surface. (b) Same as Fig. 2(b), but
with a Neumann boundary condition. (c) Same as Fig. 2(c), but with a
Neumann boundary condition. ‘ ‘

spending to a/b ratio of (a) 1/8, (b) 1/4, and (c) 1/2, and

the corresponding cylinder shapes are sketched in the

figures. The discrete points along the curves correspond to

the discrete cavity eigenfrequencies and are labeled by the

set of three integers n, m, j. The integer n labels the entire

dition (i.e., TM modes). Fig. 3 shows analogous curves for

the cylindrical cavity satisfying the Neumann condition

(i.e., TE modes). Each figure consists of three parts corre-
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curve which, therefore, refers to the n th member of the

surface wave family that propagates around the cylindrical

cavity along a helical Fermat path with a given pitch angle

a
mJ “
It follows from (11) that this angle is determined by the

ratio of the integer labels m and j, which stays constant

along each dispersion curve. Each of these figures exhibits

four curves corresponding to m/j ratios of 1/2 (dash-

dotted), 1 (solid), 2 (dashed), and co (a= 90°, dotted) with

the corresponding pitch angles am, quoted on the graphs.

These a-angles vary depending on the values of the a/b

ratio (except for a= 90° where c. /c is independent of

a/b), and inspection of Fig. 1 shows that the more elon-

gated the cavity becomes, the tighter the helix is wound for

a given value of the m/j ratio. In other words, the shorter

the cavity the more often a surface wave of fixed m/j value

will be reflected back and forth between the two flat end

surfaces. Dispersion curves have been produced only for

the indicated values of a, but the dependence on the value

of a is seen to be weak; there is a much stronger depen-

dence on the a/b value. The leftmost points on the curves

are (n, m, j) with one of m or j equal to unity. The smooth

curves drawn through these points, which rise to an infinite

cutoff at appropriate cutoff frequencies, may however be

obtained by an extrapolation of (10) with m treated as a

continuous variable. The cutoff frequencies are obtained

for m+ O, since (13) show that then, (c, /c)- co (note that

j/m and hence a~j is constant along each dispersion

curve); thus

(14)

determine the cutoff frequency. This limit is the same for

all values of j/m, i.e., for any pitch angle.

Fig. 1 may provide the impression that our formalism is

based on a ray picture of the diffraction process, which

would be valid only for large values of ka. The dispersion

curves which our formalism provides are, however, ob-

tained from the wave equation and thus, are valid for all
frequency ranges down to the cutoff frequencies.

The high-frequency limit of our dispersion curves is

obtained by noting that along each curve, m + m, j- m,

(with m/j= constant) in that limit. Using (13) and noting

that [5]

lim x~. +m lim x~. +m (15a)
m-cc m-w

it becomes apparent that

J-mm (CS/C)nm, = 1. (15b)

Figs. 2 and 3 bear out this conclusion.

We should also comment on the case of the pitch angle

a = 90°, so that the corresponding surface wave de-

s~;bes a circular, rather than helical, path over the cylinder

surface. This case corresponds to j= O, i.e., k, = O, and thus

m/j = co. Equations (10) show that then

()c, TM Xmn——

C nmO m
(16a)

and

()c. TE x~n—. —
C nmO m

while the corresponding ka-values are

(16b)

(17a)

(17b)

These results are seen to be independent of the cavity’s a/b

ratio, and they are plotted as the dotted curves in Figs. 2

and 3.

The case of an infinitely long cylindrical cavity, b-m,

should also be considered. Since kZ of (4b) has to remain

finite for this case, we must then also require that j - co, so

that k= becomes a continuous variable. Accordingly, from

(1 1), the pitch angle a~~ is then no longer quantized and

becomes a continuous quantity also, given by

tan a~m =m/(kZa) (18)

but it corresponds to different sets of continua correspond-

ing to the values of m. To obtain dispersion curves, (12)

and (13) can be used with an, replaced by the continuous

angle a~~. Figs. 2 and 3 still represent examples even for

the case of the infinite cylinder, but with particular choices

of the pitch angle.

Finally, we note that some typical features of solutions

of Neumann and Dirichlet problems become quite ap-

parent from the graphs. All curves of a given case for the

Neumann boundary condition always lie beneath the cor-

responding ones for the Dirichlet boundary condition,

thus, in the Neumann case all surface waves have corre-

spondingly slower phase velocities than in the Dirichlet

case. Moreover, for all cases shown in Figs. 2 and 3, the

dispersion curves for the Neumann case (Fig. 3) are inter-

laced, for all cavity lengths (i.e., solid, dashed, and dotted

curves), with the respective ones of the Dirichlet case

(shown in Fig. 2). This means, for example, that the solid

(dashed or dotted) curves having first index n =2 in Fig.

2(a), 2(b), or 2(c) lie between the solid (dashed or dotted)
curves having first indexes n= 2 and n =3 in Fig. 3(a), 3(b),

or 3(c), respectively. Eigenvalue interlacing theorems to

this effect could be shown to hold.

IV. SUMMARY AND DISCUSSION

We have employed the picture of helically propagating

surface waves on a cylindrical cavity of finite length,

obtained via the Watson– Sommerfeld method [3], in order

to generate, in a very simple fashion, the dispersion curves

of the surface waves. These creeping waves propagate

along helicoidal Fermat paths with fixed pitch angle a.

Their phase velocities were computed at a series of discrete

points which were close enough to permit the drawing of

continuous interpolating dispersion curves through them.

These points correspond to the locations of the cavity

eigenfrequencies and we have restricted our analysis to the

case of a cavity with perfectly conducting walls. In this

case, explicit expressions for the eigenfrequencies are known

and can be determined by a Dirichlet (TM modes) or by a

Neumann (TE modes) boundary conditions on its surface.
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The surface wave picture brings a new order into the

variety of eigenfrequencies of a cavity. Instead of m,, the

mode number and order of the Bessel function solution of

the guide, it is now the integer n which is the predominant

‘index since it labels the individual surface waves. The other

two labels m andj are seen to have geometrical significance

only since they tell us, essentially through (5b) in conjunc-

tion with (4a) and (4b) (which may also be rewritten in

terms of the wavelengths along the rp- and ,z-direction, i.e.,

(1/A. )2=(1 /Av)2+(l/Az)2 (19)

where As is the wavelength of the surface wave), exactly in

which geometrical fashion the n th surface wave is located

on the cavity surface. Equation (19) is an expression of the

fact that, with mAv = 2ma and jAZ = 2b, the surface waves

are actually closed into themselves (and thus cause the

modal fields in a resonant fashion) after completing their

helical path, including the back-and-forth reflections from

the ends of the cylinder.

In this connection, it is worth noting that the “surface

waves” of our terminology extend in fact into the interior

of the cavity (although they are more easily visualized on

the surface). But as mentioned before, this picture is most

useful at high frequencies where large mode orders m are

encountered; and in this regime, the Bessel function field

solutions of (3b) are most heavily weighted towards the

surface of the cavity [4]. We also note that the surface wave

picture with its accompanying reclassification and physical

interpretation of the cavity resonances does arise mathe-

matically from a full-fledged use of the Watson transfor-

mation [3], but that our present approach, based only on

the actual resonance frequencies, has achieved the same

results in a vastly simpler fashion.

Some further discussion of the relation between normal

modes and our surface waves (here loosely pictured as rays,

for illustrative purposes) might be in order. There is no

strict one-to-one correspondence of one mode to one ray

per se. There is, however, a connection between a ray and

some “representative” modes. This connection may be

gleaned from a paper by Tindle and Guthrie and their

discussion of sound propagation in an inhomogeneous

oceanic wave guide [6]. A ray picture emerges at high

frequencies where many modes m, j are available to form a

superposition. The weight factors of this superposition are

known if the manner of exciting the fields in the guide is

prescribed (in [6], this was provided by a point source), If a

partial sum centered around the mode with labels m ~, j. is

selected out of the modal sum, Tindle and Guthrie showed

using WKB theory and also by numerical calculation that

the field defined by such a partial sum approximately

represented a ray corresponding (for the present case) to a

geometry given by (11), i.e., to

tanamojo =(mO/jO~)(b/a). (20a)

At high frequencies, many modes are available to form the

partial sum and the field resembles a fairly sharp, well-

defined ray. At low frequencies, the few modes available

can only form a fuzzy kind of ray. This was also demon-

strated in the acoustic model experiments of A. B. Wood

where these fuzzy rays were optically visualized [7].

At a given point on the surface of the cavity (or, to that

effect, anywhere in its interior), the field of a representative

mode (m., j.), in the aforementioned sense, actually corre-

sponds to four different helical waves: a counter-rotating

pair with pitch angles A am, j, for a cylindrical waveguide,

and for the cavity, two such pairs propagating in the + z-

and – z-directions, respectively. Note, however, that this

picture of “rotating” waves has nothing to do with any

“circular polarization” of the helical wave fields; the ray

picture rather refers to the (helical) direction of energy flow

contained in the modal group centered around (m ~, j.)

which corresponds to the given helical field, while the

polarization of this group of modes follows from standard

wave guide theory [1].

It is believed that our present discussion of helical waves

introduces a novel point of view into the subject of wave

guides and resonant cavities, which due to the physical

picture it furnishes, and due to the simple connection

between cavity eigenfrequencies and helical-wave reso-

nances upon which we have elaborated here, has presented

us with some worthwhile new insights.
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